Errata

Slender Delta Wing with Conical Camber

Rajendra K. Bera
National Aeronautical Laboratory,
Bangalore, India

[J. Aircraft 11, 245-247, (1974)]

THE following corrections are to be noted: The two expressions for C_{L_n} in Eq. (8) should have a positive sign. The final expression for $c_{D_{n,m}}$ should read

$$C_{D_{n,m}} = -\epsilon_n \epsilon_m \frac{\pi \tan \delta}{2m(2n+1)} \sum_{k=0}^{n} \frac{J_k J_{n+m-k}}{(n+m-k+1)} -\epsilon_{0m} C_{L_n}$$
(9)

The ordinate captions in Figs. 2a and 2b should read $\Delta C_p/C_L$ and Δz tan δ/xC_L , respectively, where $\Delta z = z(\eta) - z(0)$. In Ref. 5, Journal of Aircraft should read Journal of the Aeronautical Sciences.

The errors are deeply regretted.

Second-Order Optimality Conditions for the Bolza Problem with Both Endpoints Variable

Lincoln J. Wood Hughes Aircraft Company, El Segundo, Calif.

[J. Aircraft 11, 212-221 (1974)]

In the footnote at the bottom of p. 213 "exclused" should read "excluded."

On p. 214, col. 1, line 20, the expression $(Y_f^{(l)})_{x(f)}$ should read $(Y_f^{(l)})_{xf}$. In line 27, $(Y_f^{(2)})_{x(f)}$ should read $(Y_f^{(2)})_{xf}$. Two lines below Eq. (16a), $(Y_o^{(l)})_{x(o)}$ should read $(Y_o^{(l)})_{x_o}$. Similar changes should be made elsewhere in the text.

On p. 214, col. 1, line 28, $(Y_f^{(l)})(x_f)$ should read $(Y_f^{(l)})_{x_f}$. In Eq. (25b), $d\underline{v}_f^{(2)}$ should read $dv_f^{(2)}$. On p. 216, col. 1, line 11 and on p. 216, col. 2, condition (a), (t_o, t_f) should read $[t_o, t_f)$. Directly below Eq. (34), δu (boldface) should read δu , and the second δu^{opt} should read δu^{opt} . In Eq. (39), $(Y_o^{(2)})_{x_f}$ should read $(Y_o^{(2)})_{x_o}$. On p. 216, col. 2, line 9, δu (boldface) should read δu . On p. 216, col. 2, condition (b), "Lengendre" should read δu . On p. 216, col. 2, condition (b), "Lengendre" should read δu . Three lines below Eq. (45), δu (boldface) should read δu . Three lines below Eq. (51), (t_o, t_2) should read $(t_o, t_2]$, (t_2, t_f) should read $[t_2, t_f)$, and $S^*(t)$ should read $S \cdot t$.

In condition (2) on p. 217, col. 2, (t_o, t_f) should read $[t_o, t_f]$. In condition (3BFa), (t_2, t_f) should read $[t_o, t_f]$. In condition (3BFb), (t_o, t_2) should read $[t_o, t_2]$. In condition (3BFc), $\hat{S}(t_2)$ should read $\hat{S} \cdot (t_2)$. On p. 218, col. 1, line 17, $S(t_1)$ should read $S \cdot (t_1)$. In condition (3B) on the same page, "and" should be replaced by "that." In condition (3F) on the same page, $S \cdot (t)$ should read $\hat{S} \cdot (t)$. In Eq. (71a), a comma should be inserted before F.

Received October 2, 1974.

Index category: Aircraft Aerodynamics (Including Component Aerodynamics).

Received December 26, 1974.

Index category: Navigation, Control, and Guidance Theory.